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Abstract. We investigate the effect of the anisotropic spin-spin interaction on the ground state density
distribution of the one dimensional spin-1 bosonic gases within a modified Gross-Pitaevskii theory both
in the weakly interaction regime and in the Tonks-Girardeau (TG) regime. We find that for ferromagnetic
spinor gas the phase separation occurs even for weak anisotropy of the spin-spin interaction, which becomes
more and more obvious and the component of mF = 0 diminishes as the anisotropy increases. However,
no phase separation is found for anti-ferromagnetic spinor gas in both regimes.

PACS. 03.75.Mn Multicomponent condensates; spinor condensates – 03.75.Hh Static properties of con-
densates; thermodynamical, statistical, and structural properties – 67.40.Db Quantum statistical theory;
ground state, elementary excitations

Since Bose-Einstein condensates (BECs) of trapped alkali
atomic clouds were realized experimentally [1], many new
regimes have been investigated extensively. The experi-
mental progress on trapping cold atoms under a highly
controllable way has opened the exciting opportunities for
studying strongly correlated atomic systems. When BECs
are confined in a far-off-resonant optical trap regardless
of their hyperfine state, the atomic spin degrees of free-
dom are liberated and the spinor nature of the condensate
can be manifested [2]. It stimulates enormous theoretical
and experimental interests in studying a variety of spin-
related properties, such as quantum entanglement of spins,
spin domains, etc. [3,4]. Especially, the magnetism of the
spinor gas has been studied by many authors [3,5–7]. A
great number of theories and experiments have shown that
when the spinor gas realized in a magnetic trap is loaded
into an optical trap, the spin domain will form after evo-
lution for a period of time.

Domain formation or phase separation in the multi-
component BECs was also intensively investigated in the
past years. The condensate mixture displays a novel phase
in which phase separation occurs if there exists a strong re-
pulsive interaction between the species [8]. For the spinor
gases, the spin-dependent interaction is much weaker than
the contact interaction, and thus the spin-dependent in-
teraction almost has no effect on the total density dis-
tribution. Although each component displays a different
density profile, no phase separation was found in the case

a e-mail: schen@aphy.iphy.ac.cn

of the isotropic spin-spin interaction [9,10]. In this paper,
we will show that anisotropic spin-spin interaction could
result in the formation of the static spin domain in the
spinor gases and we mainly focus on one-dimensional (1D)
cold atom systems for both the weakly interacting regime
and the strongly interacting TG regime.

Recently, there has been tremendous experimental
progress towards the realization of trapped 1D cold atom
systems [11–14]. An array of 1D quantum gas is obtained
by tightly confining the particle motion in two directions
to zero point oscillations [15] realized by means of two-
dimensional optical lattice potentials. By loading BECs
in the optical lattice or changing the trap intensities,
and hence the atomic interaction strength, the atoms
can be made to act either like a condensate or like a
TG gas [16,17]. The important parameter characterizing
the different physical regimes of the 1D quantum gas is
γ = mg/�

2ρ, the ratio of the interaction to kinetic energy,
where g is an effective 1D interaction constant, m is the
mass of the atom, and ρ is the density.

Let us consider a repulsively interacting spin-1 Bose
condensate trapped by a harmonic potential that does not
depend on the atomic internal states V (r) = m

2 [ω2
xx2 +

ω2
⊥(y2 + z2)], where m is the mass of each boson, ωx is

the trapping frequency along the x (radial) direction, and
ωy = ωz ≡ ω⊥ is the trapping frequency along the y and z
(transverse) directions. Assuming the radial confinement
(�ωx) much weaker than the transversal one (�ω⊥) leads
to a 1D configuration, in which the motion of the atoms
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is frozen along the transverse directions. In such a situa-
tion, the external potential that contributes to the atomic
motion reads V (x) = m

2 ω2
xx2. In second quantization lan-

guage, the Hamiltonian of our system may be expressed as

H = H0 + Hint + Hspin (1)

with

H0 =
∫

dxΨ̂ †
i

(
− �

2

2m

d2

dx2
+ V (x)

)
Ψ̂i,

Hint =
c0

2

∫
dx :

(
Ψ̂ †

i Ψ̂i

)2

:,

where we are assuming that the interaction between
bosons is described by a contact two-body potential, which
may be described by a Dirac-delta function. Finally,

Hspin =
c2

2

∫
dxΨ̂ †

k Ψ̂ †
i [(Fz)ij (Fz)kl

+∆
(
(Fx)ij (Fx)kl + (Fy)ij (Fy)kl

)
]Ψ̂jΨ̂l

describes the spin-spin interaction. In Hspin, the
anisotropy parameter ∆ is introduced phenomenologically
to describe the anisotropy of spin-spin interaction, which
may arise from the anisotropic magnetic dipole-dipole in-
teraction, whereas ∆ = 1 corresponds to the isotropic
model. When c2 < 0 the system is in a ferromagnetic
regime, while for c2 > 0, the system is anti-ferromagnetic.
We limit our discussion on 0 ≤ ∆ ≤ 1 because only
in this regime the phase separation may take place [18].
Here Ψ̂i (x) (Ψ̂ †

i (x)) is the field operator that annihi-
lates (creates) an atom in the ith internal state at lo-
cation x, i = +, 0,− denotes the atomic hyperfine state
|F = 1, mF = +1, 0,−1〉, respectively. Summation is as-
sumed for repeated indices in the above Hamiltonian and
the pair of colons denote the normal-order product. Fx, Fy

and Fz are the spin-1 matrices with the quantization axis
taken along the z-axis direction. The atomic interaction
constants are expressed through the effective 1D interac-
tion strength U0,2 with c0 = U0+2U2

3 and c2 = U2−U0
3 ,

where U0,2 have the following relation

U0,2 = − 2�
2

ma1D
0,2

, (2)

a1D
0,2 = − d2

⊥
2a0,2

(1 − C (a0,2/d⊥)) .

Here a0,2 denotes the s-wave scattering lengths between
two identical spin-1 bosons in the combined symmet-
ric channel of total spin 0(2) when the cold atoms are
trapped intensively in transverse direction with the trans-
verse trapping frequency �ω⊥ [10,19–21], d⊥ =

√
�/mω⊥

and C ≈ 1.4603.
In order to deal with the weakly and strongly inter-

acting regimes on the same footing, we work in a scheme
of modified Gross-Pitaevskii theory [10,22–24] in which
the energy density ε (ρ) is taken from the exactly solvable
problem of a three-component Bose gas [10]. It follows

that the properties of a spinor gas are determined by the
following spin-dependent energy functional

E =
∫

dx

[
Φ∗

i

(
− �

2

2m

d2

dx2
+ V (x)

)
Φi + ρε (ρ)

]

+
∫

dx
c2

2
Φ∗

kΦ∗
i [(Fz)ij (Fz)kl

+∆
(
(Fx)ij (Fx)kl + (Fy)ij (Fy)kl

)
]ΦjΦl, (3)

where ρ =
∑

i ρi =
∑

i |Φi|2 and the energy den-
sity [23,25,26]

ε (ρ) =
�

2

2m
ρe (γ) =

{
c0ρ/2, γ � 1

π2
�

2ρ2/6m, γ � 1
. (4)

The first line of energy functional (3) is made up of three
contributions: the first one derives from the usual kinetic
energy operator, the second one represents the additional
term related to the inhomogeneity due to the external con-
finement V (x) [27], and the last one corresponds to the
energy density in the homogeneous system. In the sec-
ond and third lines, the contribution deriving from spin-
spin interaction is involved; in particular, the term in the
square brackets has the explicit form

∆
(
2ρ0ρ− + 2ρ+ρ0 + 2Φ∗2

0 Φ+Φ− + 2Φ2
0Φ

∗
−Φ∗

+

)
+ ρ2

+ + ρ2
− − 2ρ+ρ−. (5)

At this point, we stress that, generally, the spin-spin in-
teraction coupling (c2) constant is much smaller than the
s-wave interaction one (c0), i.e. c2 � c0. If we assume
that there is no spin-spin interaction (c2 = 0) and no ex-
ternal trapping (V (x) = 0), then the system described by
Hamiltonian (1) is integrable [26]; its ground-state energy
density has the same form as that of Lieb-Liniger prob-
lem [25].

In the system both the total atom number and the
magnetization M =

∫
dx 〈F 〉 =

∫
dx

[
Φ∗

+Φ+ − Φ∗
−Φ−

]
are

conserved [9,28]. In order to obtain the ground state from
a global minimization of E with the constraints on both N
and M, we introduce separately Lagrange multiplier B to
conserve M and the chemical potential µ to conserve N .
The ground state is then determined by a minimization
of the free-energy functional F = E − µN − BM. The
dynamics of Φi is governed by the coupled GPEs

i�
∂Φ+

∂t
= [H − B + c2 (ρ+ + ∆ρ0 − ρ−)] Φ+ + c2∆Φ2

0Φ
∗
−,

i�
∂Φ0

∂t
= [H + c2 (ρ+ + ρ−)] Φ0 + 2c2∆Φ+Φ−Φ∗

0,

i�
∂Φ−
∂t

= [H + B + c2 (ρ− + ∆ρ0 − ρ+)] Φ− + c2∆Φ2
0Φ

∗
+,

(6)

with

H = − �
2

2m

d2

dx2
+ V (x) + F̃ (ρ) (7)
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Fig. 1. The density profile of ground state of a
spin-1 87Rb condensates for the + (solid line)
component, 0 (dashed line) component and –
(dash-dot lines) component in the weakly inter-
action regime with m = 0.2. (a) ∆ = 1.0; (b)
∆ = 0.9; (c) ∆ = 0.8; (d) ∆ = 0.5; (e) ∆ = 0.2;
(f) ∆ = 0.0. In this figure the length is in the
unit of a = 1.2 µm.

and

F̃ (ρ) =
∂

∂ρ
[ρε (ρ)] =

{
c0ρ, γ � 1

π2
�

2ρ2/2m, γ � 1
. (8)

We obtain the ground state of spin-1 BECs by propa-
gating the coupled GPEs equation (6) in imaginary time.
In each propagating step, the wave function Φi is nor-
malized to conserve the atomic number and by adjusting
the Lagrange multiplier B the conservation of magnetiza-
tion M is assured. In our procedure the Crank-Nicholson
scheme is used. We will determine the ground state for
the 1D spinor Bose gases trapped in the harmonic trap
V (x) = 1

2mω2
xx2 both in the weakly interacting regime

and in the TG regime.
To investigate the effect of of anisotropy parameter ∆,

we evaluate the density profile of the ground state of 1D
spinor gases for the 87Rb (ferromagnetic) with a0 = 102aB

and a2 = 100aB (aB is the Bohr radius) in the harmonic
trap for different anisotropy parameters. By properly tun-
ing the parameters, the system may be either in the weakly
interacting regime or in the TG regime. Let us first con-
sider the specific system with the typical parameters of
the trap ωx = 0.5 kHz, ω⊥ = 50 kHz and the atomic
number N = 2000, in which case the effective interaction
strength γ ∼ 0.008 indicating that the system is in the
weakly interacting regime. Figure 1 displays the density
profiles in unites of N/a with a =

√
�/mωx for different

anisotropy parameter ∆ in the weakly interaction regime
with m = M

N = 0.2. When the spin-spin interaction is
isotropic, i.e. ∆ = 1.0, the three different components su-
perpose each other and they have similar distributions. In
the case of weak anisotropy, for instance ∆ = 0.9 here, the
distribution has changed explicitly. Therefore the ground
state configurations have positive magnetization in some
region but negative in another. Also the 0 component
(dashed line) diminishes as the anisotropy increases. As
the anisotropy becomes more and more clear, the compo-
nents tend to separate and coincide only at the bound-
ary between them. The components always try to avoid

each other. It is shown that when ∆ = 0.2 the 0 compo-
nent disappears completely and the density profiles of +
component (solid line) and − component (dash-dot lines)
exhibit in the form of phase separation. The correspond-
ing density profiles in the TG regime are plotted in Fig-
ure 2 with m = 0.2. In this regime the parameters are
tuned to ωx = 10 Hz, ω⊥ = 500 kHz, the atomic number
N = 50 and the effective interaction strength γ ∼ 15. In
this case, the similar density distributions occur. Compar-
ing the Figure 1a and the Figure 2a we see that the density
profiles in the TG regime behave like that of Fermions. Ac-
cording to Figure 2b, with the very weak anisotropy, ob-
vious phase separation has occurred in the Tonks regime.
Figure 3 displays the density profiles for different magne-
tization but with the same anisotropy parameter, which
indicates that the magnetization only influences on the
ratio of the atomic numbers between the + component
and − component. It turns out that although the spin-
spin interaction is much small, its property affects greatly
the density distribution of each component of the spinor
gas and the phase separation occurs more easily in the
TG regime than in the weakly interacting regime. The
1D spinor gas in the TG regime might provide us a good
platform to investigate the magnetism of the cold atoms.

For further studying the effect of anisotropy on the
anti-ferromagnetic system, we consider a condensate of
23Na in the weakly interacting regime with a0 = 50aB

and a2 = 55.1aB. The trap frequencies are chosen as
ωx = 50 Hz, ω⊥ = 10 kHz and N = 1000 so that
γ ∼ 0.001. The density profiles are shown in Figure 4 with
m = 0.2 for anisotropic and isotropic case. It is shown that
no phase separation occurs even for very large anisotropy
and the same distribution as the case of isotropic spin-
spin interaction displays [10]. From the above results, it is
obvious that the density distributions of every component
strongly depends on its’ anisotropy and the ferromagnetic
or the anti-ferromagnetic properties of the relatively weak
spin interactions, whereas the total density is almost not
affected by the weak spin interactions.
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Fig. 2. The density profile of ground state of a
spin-1 87Rb condensates for the + (solid line)
component, 0 (dashed line) component and –
(dash-dot lines) component in the Tonks regime
with m = 0.2. (a) ∆ = 1.0; (b) ∆ = 0.9;
(c) ∆ = 0.8; (d) ∆ = 0.5; (e) ∆ = 0.2; (f)
∆ = 0.0. In this figure the length is in the unit
of a = 8.5 µm.

Fig. 3. The density profile of ground state of
a spin-1 87Rb condensates for the + (solid line)
component, 0 (dashed line) component and −
(dash-dot lines) component in the weakly inter-
action regime with ∆ = 0.2. (a) m = 0.0; (b)
m = 0.5; (c) m = 0.8. In this figure the length is
in the unit of a = 1.2 µm.

Fig. 4. The density profile of ground state of a spin-1 23Na
condensates for the + (solid line) component, 0 (dashed line)
component and – (dash-dot lines) component in the weakly
interaction regime with m = 0.2. (a) ∆ = 0.5; (b) ∆ = 1.0. In
this figure the length is in the unit of a = 7.4 µm.

Finally, we discuss the possible experimental real-
ization of anisotropic spin interaction in spinor gases.
It is well known that magnetic dipolar interactions are
anisotropic despite the fact that dipolar interactions are
rather weak comparing to the spin interactions. The rel-
ative strength of the dipolar and the spin exchange in-
teractions is estimated to be 10−1 for 87Rb and 10−3

for 23Na [29]. Since the magnetic dipole-dipole interac-
tion is irrelevant to the s-wave scattering length, we may
tune the s-wave scattering length experimentally by the
Feshbach resonance so that the strength of isotropic spin-
spin interaction c2 is comparable to that of dipole-dipole
interaction, and thus the anisotropic interaction becomes

obvious. Although a condensate of strongly anisotropic
spinor gases remains to be realized, experimentalists in
reference [30] have already successfully demonstrated the
effect of the dipole-dipole interaction. With the present
rapid development in the experimental manipulation of
cold atoms, the goal of making a condensate of spinor
gases with anisotropic spin interaction does not seem to be
far-fetched. It is worth indicating that our approach can be
directly applied to deal with the three-dimensional (3D)
problem for which the mean-field theory corresponds to
our weakly interacting theory. It follows that a 3D spinor
gas with anisotropic spin interactions also displays phase
separation. However, the result for the strongly interact-
ing regime can not be extended to the higher-dimensional
case in which no TG gas can be realized. Our work is
helpful to understand the properties of the spinor conden-
sates and deepen our understanding of formation of spin
domains in spinor gases.

In summary, we have studied the density profile of
the ground states of 1D spin-1 Bose gases for different
anisotropy parameter ∆. The distributions of the ferro-
magnetic spinor gas are affected tremendously by ∆ al-
though the c2 term is very small compared with c0 term
in equation (1). Even if the anisotropy is weak, the distri-
butions show obvious difference from that of the isotropic
case. In the large anisotropy the component of mF = 0 dis-
appears and obvious phase separation occurs both in the
weakly interaction regime and in the Tonks regime. And
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the effect of anisotropy in the TG regime can display more
obviously with weaker anisotropy than the former case.
However, when the spinor gas is anti-ferromagnetic, the
distribution is no longer being affected by the anisotropy
parameter.
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